Supplemental Material for “Visual Attribute Transfer through Deep Image Analogy”

JING LIAO, Microsoft Research Asia
YUAN YAO, Shangai Jiao Tong University
LU YUAN, Microsoft Research Asia
GANG HUA, Microsoft Research Asia
SING BING KANG, Microsoft Research
Contents

1 Applications ... 3
 1.1 Photo to style .. 3
 1.2 Style to style ... 10
 1.3 Style to photo ... 12
 1.4 Photo to photo .. 14

2 Evaluations .. 16
 2.1 Category 1: the same scene with varied views and motions 16
 2.2 Category 2: the same scene, with large variations in views, colors and tones . 18
 2.3 Category 3: semantically-related scene with vastly different styles 20

3 Limitations .. 22
1 Applications

1.1 Photo to style

In this application, our method transfers a photo to a reference artistic style. Users can easily borrow specific artwork stylization to render their own photos for sharing and entertainment.

![Input (ref 1)](image1) ![Input (ref 2)](image2) ![Input (ref 3)](image3)

![Input (src)](image4) ![Output 1](image5) ![Output 2](image6) ![Output 3](image7)

![Input (ref 1)](image8) ![Input (ref 2)](image9) ![Input (ref 3)](image10)

![Input (src)](image11) ![Output 1](image12) ![Output 2](image13) ![Output 3](image14)

Figure 1: Photo-to-style transfer results.
Figure 2: Photo-to-style transfer results.
Figure 3: Photo-to-style transfer results.
Figure 4: Photo-to-style transfer results.
Here we compare our results with other stylization methods or apps based on neural networks. Our approach is capable of higher quality content-specific stylization that better preserve structures. Ours also better reproduce the reference styles.

Figure 5: Comparison with other style-transfer methods and apps based on neural networks.
Figure 6: Comparison with other style-transfer methods based on neural networks.
Figure 7: Comparison with other style-transfer methods based on neural networks.
1.2 Style to style

When input pairs of images are two content-related artworks but with vastly different styles, our method is able to swap the styles.

Figure 8: Style-to-style transfer results.
Figure 9: Style-to-style transfer results.
1.3 Style to photo

In this application, we take a piece of artworks as the source (including sketch, CG, painting), and a photograph as the reference. Our approach is able to transfer the artwork to a real photo, with more plausible results when both images are very related.

Figure 10: Results of transfer a painting or CG to a photo.
Figure 11: Comparisons of our CG-to-photo results with results of CG2Real[8] on their examples. For each group, the source CG is used by both ours and theirs, but the reference photo is only for ours. Their multiple reference photos are not given in their paper.
1.4 Photo to photo

In this application, our approach takes two photos as input and then swaps the color or tone between them in corresponding regions.

Figure 12: Results of color transfer between photographs.
Figure 13: Our time-lapse results compared with regional foremost[13] method. Ours and theirs both take the summer one as the source and other three as references. Theirs has some distortion artifacts while ours has some mismatches, as indicated by the red rectangles. To be a fair comparison, we don’t use our bilateral refinement in this case.
2 Evaluations

We evaluate the matching quality of our approach and state-of-the-art methods on three various categories of data: (I) the same scene, with similar appearance but varied views or motions (e.g., neighboring frames in video); (II) the same scene, with large variations in views, colors and tones (e.g., two photos from different cameras or illuminations); (III) semantically-related scene with vastly different styles (e.g., photograph and painting). Since the task of our paper is image reconstruction rather than motion estimation, we show the reconstruction results based on the correspondences obtained by all methods, rather than flow maps.

2.1 Category 1: the same scene with varied views and motions

In this category, we test on the datasets of Middlebury[2] and VidPair[14]. All our results are obtained with the setting $\{\alpha^L\}_{L=4,3,2,1} = \{1.0, 1.0, 1.0, 1.0\}$. And all compared other approaches use author-provided implementation with the default setting.

![Comparison of different dense correspondence methods on input pairs of category 1 (VidPair[14] dataset).](image)

Figure 14: Comparison of different dense correspondence methods on input pairs of category 1 (VidPair[14] dataset).
Figure 15: Comparison of different dense correspondence methods on input pairs of category 1 (Middlebury[2] dataset).
2.2 Category 2: the same scene, with large variations in views, colors and tones

In this category, we test on the data collected from the papers of SIFT flow[11], NRDC[6] and Regional foremost matching (RMF)[13]. All our results are obtained with the setting $\{\alpha^L\}_{L=4,3,2,1} = \{0.9, 0.8, 0.7, 0.2\}$. And all compared other approaches use author-provided implementation with the default setting.

Figure 16: Comparison of different dense correspondence methods on input pairs of category 2. We do not have some results of RFM[13], and its implementation, so they are empty here.
Figure 17: Comparison of different dense correspondence methods on input pairs of category 2.
2.3 Category 3: semantically-related scene with vastly different styles

In this category, we test on the image pairs collected from Internet by the same query, like bird, portrait. They are semantically related but vastly different in styles, like a painting and a photo, two different paintings, or two photos of different objects. All our results are obtained with the setting $\{\alpha^L\}_{L=4,3,2,1} = \{0.8, 0.7, 0.6, 0.1\}$. And all compared other approaches use author-provided implementation with the default setting.

Figure 18: Comparison of different dense correspondence methods on input pairs of category 3.
Figure 19: Comparison of different dense correspondence methods on input pairs of category 3.
3 Limitations

In this section, we give some typical failure cases to show the limitations of our work.

Figure 20: Failure cases of type 1. Our method fails to find correct matches for the object which is found in one image but not the other (like hairs in the left example and grass in the right example.)

Figure 21: Failure cases of type 2. There are some structure distortions and misalignments in these examples (like sails in the left example and windows in the right one), because our NNF search does not allow patches to be either rotated or scaled.

Figure 22: Failure cases of type 3. Our photo-to-style transfer cannot produce geometry style transfer, like exaggerations of the eyes and the nose, due to the assumption in our work to preserve the content structure.
Figure 23: Failure cases of type 4. Our method may fail to find correspondence in textureless regions that have very low neural activation, like the backgrounds in these two examples.

Figure 24: Failure cases of type 5. In this two examples, our method succeeds in the task of photo to style, but fails in the reversed direction. One reason is that artworks tend to lack detail in favor of creativity. Another reason is that humans are very sensitive to slight structure misalignments.

Figure 25: Failure cases of type 6. Our method may fail to find correspondences for highly abstract paintings (as the nympehas drawn by Claude Monet and the fishes in the Chinese brush painting) which are unrecognizable for a pre-trained VGG network.
Bibliography

